ESA Rosetta probe spots aurora around a comet

Comets have their own ‘Northern Lights’: European Space Agency’s Rosetta spacecraft spots aurora around a cosmic snowball for the first time

  • Astronomers have been searching through data from the ESA Rosetta mission 
  • They found signs of charged particles from the Sun interacting with the coma 
  • 67P/Churyumov-Gerasimenko, has been extensively studied by the probe 
  • Astronomers used data from the probe to discoverer the ultraviolet aurora 

An aurora has been spotted surrounding a comet orbiting Jupiter – the first time the glowing emissions have been seen around a cosmic snowball. 

Astronomers from the Southwest Research Institute (SwRI) identified the shimmering phenomenon using instruments on the European Space Agency (ESA) Rosetta spacecraft. 

Rosetta was the first space mission to place a lander on the surface of a comet, the first to orbit a comet nucleus and the first to follow it into the inner solar system. 

On the Earth, auroras are formed when charged particles from the Sun follow the planet’s magnetic field lines to the north and south poles where they strike atoms in the atmosphere and create a shimmering curtain of colourful lights in the sky. 

Similar phenomena have been seen on planets and moons in our solar system and even around a distant star – this is the first time it has been spotted around a comet.

It was caused by charged particles coming on solar winds and interacting with the coma – gas and dust – surrounding the nucleus of the comet, known as 67P/Churyumov-Gerasimenko.

Instruments on the European Space Agency (ESA) Rosetta spacecraft helped Southwest Research Institute (SwRI) astronomers spot the aurora that shines in ultraviolet light

The team were amazed to find that the UV emissions in the aurora were driven by electrons (inward arrows) in the solar wind that break apart water and other molecules in the coma 

In the case of the comet the ‘lights’ are only visible in ultraviolet so couldn’t be seen by the naked eye – unlike the aurora at high latitudes on Earth.

A number of instruments onboard Rosetta were involved in the discovery including a far-ultraviolet spectrograph and ion and electron sensors. 

The Ion and electron sensor (IES) detected the electrons that caused the aurora surrounding the comet, according to Jim Burch from SwRI.

‘Charged particles from the Sun streaming towards the comet in the solar wind interact with the gas surrounding the comet’s icy, dusty nucleus and create the auroras,’ said Burch who leads the IES team.  

The envelope of gas around 67P/C-G, called the ‘coma,’ becomes excited by the solar particles and glows in ultraviolet light – not visible to the naked eye.

‘Initially, we thought the ultraviolet emissions at comet 67P were phenomena known as ‘dayglow,’ a process caused by solar photons interacting with cometary gas,’ said SwRI’s Dr Joel Parker who leads the Alice spectrograph project.

The team were amazed to find that the UV emissions in the aurora were driven by electrons in the solar wind that break apart water and other molecules in the coma.

They had ‘been accelerated in the comet’s nearby environment. The resulting excited atoms make this distinctive light,’ said Parker.

Dr Marina Galand of Imperial College London led a team that used a physics-based model to integrate measurements made by various instruments aboard Rosetta.

‘By doing this, we didn’t have to rely upon just a single dataset from one instrument,’ said Galand, the lead author of the paper outlining the results.

‘Instead, we could draw together a large, multi-instrument dataset to get a better picture of what was going on,’ Galand explained. 

In addition to discovering these cometary auroras, the spacecraft was the first to orbit a comet’s nucleus, the first to fly alongside a comet as it travelled into the inner Solar System and the first to send a lander to a comet’s surface 

‘This enabled us to unambiguously identify how 67P/C-G’s ultraviolet atomic emissions form, and to reveal their auroral nature.’

‘I’ve been studying the Earth’s auroras for five decades,’ Burch said. ‘Finding auroras around 67P, which lacks a magnetic field, is surprising and fascinating.’

Following its rendezvous with 67P/C-G in 2014 through 2016, Rosetta has provided a wealth of data revealing how the Sun and solar wind interact with comets. 

In addition to discovering these cometary auroras, the spacecraft was the first to orbit a comet’s nucleus, the first to fly alongside a comet as it travelled into the inner Solar System and the first to send a lander to a comet’s surface. 

The findings have been published in the journal Nature Astronomy. 

THE EUROPEAN SPACE AGENCY ROSETTA PROBE GETTING A CLOSE LOOK AT COMET 67P

The comet, known as ’67P/Churyumov–Gerasimenko’, or just 67P for short, orbits Jupiter at a rate of once every six-and-a-half years.

Incredible images captured by the Rosetta space probe have just been released as part of a huge archive of 70,000 photos. They highlight key features of the comet 67P/Churyumov-Gerasimenko

It was named after the two Soviet astronomers who discovered it in 1969, and measures around 2.7 by 2.5 miles (4.3 by 4.1 km) at its longest and widest points.

The comet was the focus of the European Space Agency’s Rosetta mission, launched on 2 March 2004.

Rosetta was sent to study the comet’s activity and to launch a lander probe to its surface, known as Philae.

Rosetta reached 67P in 2014 and crash landed into the comet in September last year after it had completed its recon mission.

New details from the probe’s readings are still coming to light today as scientists sift through Rosetta’s stunning imagery.

This includes the discovery of an aurora surrounding the comet caused by charged particles in solar winds interacting with the comet’s coma. 

Source: Read Full Article